Биомеханика что это такое

Биомеханика что это такое

Что такое биомеханика?

Название включает в себя греческие слова bios — жизнь и mexane — механизм, рычаг. В отличие от традиционной механики, в которой рассматривается движение и взаимодействие предметов, биомеханика это наука, которая изучает и анализирует многогранные и разносторонние движения живых существ. В фитнесе, да и во всех видах спорта, особенно подвижных, биомеханика рассматривается и используется, как базовая наука и имеет большое значение. Основу биомеханики составляют физиология, геометрия, математика, анатомия и физика в разделе механики. Не меньше биомеханика связана с психологией и биохимией. Все варианты взаимодействия прикладных наук полезны и приносят ощутимую пользу.

Биомеханическая мускульная работа

Работа любой мышцы человеческого опорно-двигательного аппарата основаны на умении и возможности мышцы сокращаться. В момент мышечного сокращения сама мышца укорачивается, а обе точки крепления к костям сближаются одна относительно другой. Подвижная точка Insertion начинает приближаться к начальной неподвижной точке крепления Origin, так осуществляется движение данной конечности.

Если применить это качество и свойство мышечной материи к области фитнеса, то открывается возможность выполнения определенной механической работы (подъем штанги, перемещение конечности с гантелей), прилагая разную степень мышечного усилия. Мышечная сила в данном случае будет определяться площадью сечения мышечных волокон, или говоря простым языком площадью разреза мышцы в поперечнике. Размер мышечного сокращения определен длиной мышечного волокна. Соединения костей и взаимодействие с мышечными группами устроено в форме механического рычага, позволяющего выполнять простейшую работу по поднятию и передвижению предметов.

Механика учит нас, что чем дальше от оси будет приложена сила, тем выше кпд, ибо благодаря большому плечу рычага, работу можно выполнить с меньшими усилиями. Так и в биомеханике — если мышца крепится дальше от опорной точки, тем более выгодно будет использована ее сила. П.Ф. Лесгафт в этом смысле квалифицировал мышцы на сильные, имеющие крепление дальше от опорной точки и быстрые или ловкие, имеющие точку крепления вблизи опоры.

Мышечное движение всегда производится в двух противоположных направлениях. По этой причине для выполнения двигательного процесса вокруг одной опорной точки необходимо наличие двух мышц на противоположных сторонах одна от другой. Направления движения в биомеханике тоже получили свои определения: сгибание и разгибание, приведение и отведение, горизонтальное приведение и горизонтальное отведение, ротация медиальная и ротация латеральная.

Мышца, которая вызывает момент движения при сокращении и принимает на себя основную нагрузку, называется агонистом — Prime mover. Каждое сокращение мышцы-агониста приводит к полному расслаблению противоположной ей мышцы-антагониста. Если мы выполняем сгибание в локте, агонистом будет являться сгибатель локтя — бицепс, а антагонистом в этот момент будет разгибатель локтя — трицепс. После окончания движения обе мышцы будут уравновешивать друг друга, находясь в немного растянутом состоянии. Это явление называется мышечным тонусом. Мышцы, помогающие выполнять движение мышце-агонисту и действующие в одном с ним направлении, но испытывающие меньшую нагрузку и меньшую степень сокращения называются синергистами. Мышцы, обеспечивающие устойчивость и равновесие определенному суставу при выполнении движения, называются фиксаторами. Помимо фиксаторов значительную роль в тренировочном процессе выполняют мышцы стабилизаторы, которые работают в качестве элементов равновесия тела при смещении центра тяжести и увеличении общей силовой нагрузки. Кроме того мышцы стабилизаторы участвуют в повседневной жизни человека в обеспечении равновесного расположения частей тела относительно друг друга вне силовой тренировки.

В любой момент движения, кости образуют механические рычаги, следуя за мышечными командами.

Биомеханика выделяет три вида биомеханических рычагов:

  • рычаг 1 рода, где точки приложения силы расположены с противоположных сторон от оси;
  • рычаг 2 рода, где точки приложения силы располагаются по одну сторону от оси, но на разном от нее расстоянии, поэтому здесь применимы два вида рычага, условно называемые «рычаг силы» и «рычаг скорости».

Рассмотрим виды рычагов более подробно:

Рычаг 1 рода

В биомеханике он называется «рычагом равновесия». Поскольку точка опоры расположена между двумя точками приложения силы, рычаг еще называют «двуплечим». Такой рычаг нам демонстрирует соединения позвоночника и черепной коробки. Если вращающий момент силы, действующей на затылочную часть черепа равен вращающему моменту силы тяжести, действующему на переднюю часть черепа, и они имеют одинаковое плечо рычага, достигается равновесие. Нам удобно, мы не замечаем разнонаправленного действия, и мышцы не напряжены.


Рычаг 2 рода

В биомеханике он подразделяется на два вида. Название и действие этого рычага зависят от места расположения приложения нагрузки, но у рычагов обоих видов точка приложения силы точка приложения сопротивления находятся по одну сторону от точки опоры, поэтому оба рычага являются «одноплечими». Рычаг силы образуется при условии, что длина плеча приложения силы мышц длиннее плеча приложения силы тяжести (сопротивления). В качестве наглядного примера можно продемонстрировать человеческую стопу. Осью вращения здесь являются головки плюсневых костей, пяточная кость служит точкой приложения силы, а тяжесть тела образует сопротивление в голеностопном суставе. Здесь имеет место выигрыш в силе, за счет боле длинного плеча приложения силы и проигрыш в скорости. Рычаг скорости имеет более короткое плечо приложения мышечной силы, чем плечо силы противодействия (силы тяжести). Примером может служить работа мышц сгибателей в локтевом суставе. Бицепс крепится вблизи точки вращения (локтевой сустав) и с таким коротким плечом необходима дополнительная сила мышце сгибателю. Здесь имеет место выигрыш в скорости и ходе движения, но проигрыш в силе. Можно заключить, что чем ближе от места опоры будет крепиться мышца, тем короче будет плечо рычага, и тем значительнее будет проигрыш в силе.

Читайте также:  Бактерии в желудке виды


При соединении двух костных пар образуется биокинетическая пара, характер движения в которой определяется строением костного сочленения (сустава), работой мышц, сухожилий и связок. Подвижность в суставе может зависеть от многочисленных факторов: пола, возраста, генетического строения, состояния ЦНС.

Для того чтобы оптимально и правильно принять исходное положения для выполнения упражнений необходимо напрямую руководствоваться знанием законов рычагов первого и второго типов. Если мы изменим положение конечности или туловища, то в свою очередь определенным образом изменится длина плеча рычага конечности или туловища. В любом случае всегда исходное положение выбирается таким образом, чтобы начальный период тренировки сопровождался менее нагрузочными положениями конечностей и корпуса. В дальнейшем, в зависимости от состояния и формы тренирующегося, можно постепенно увеличивать длину плеча рычага, для усиления воздействия на определенную мышечную группу. Увеличение силы противодействия одновременно с удлинением плеча рычага в свою очередь еще больше акцентирует внимание на укрепление силы конкретной мышечной группы или одной мышцы.

Для осуществления технически грамотного движения в момент выполнения упражнения, необходимо и важно знать, в каком направлении работает сустав, соединяющий активную мышечную группу. Здесь нам необходимо опять обратиться к анатомическим плоскостям. Виды и описание осей и плоскостей даны в разделе кинезиологии. Виды и названия суставов вы можете найти в разделе анатомии. Опорно-двигательный аппарат человека представляет собой различные костные сочленения, соединенные друг с другом посредством суставов. Тело человека может свободно перемещаться в шести направлениях: вперед и назад, вправо и влево, вверх и вниз. Определенная классификация суставов позволяет движения в этих направлениях.

Суставы трехосные — это самые подвижные суставы, они свободно обеспечивают движение в трех направлениях. Примером служат: соединения черепа и позвоночника, межпозвонковых дисков, плечевые суставы, лучевой и тазобедренный. Подобные суставы имеют шарообразную форму. Движения в этих суставах происходят в сагиттальной, корональной и трансверсальной плоскостях. В этих суставах тренирующийся имеет возможность выполнять все виды движений: сгибание и разгибание, приведение и отведение, горизонтальное приведение и отведение, медиальную и латеральную ротацию.

Суставы двухосные — обеспечивают движение в двух направлениях, менее подвижны. Они имеют форму эллипса или седла. Движения в этих суставах происходят в сагиттальной и корональной плоскостях. Примером служат суставы пальцев рук, лучезапястный сустав. Здесь возможны сгибание и разгибание, приведение и отведение.

Суставы одноосные — обеспечивают однонаправленное движение. Они имеют форму цилиндров и блоков. Примером служат плече локтевой, лучевой, коленный, голеностопный суставы. Движения возможны в сагиттальной плоскости и это сгибания и разгибания. В лучевом суставе возможна ротация латеральная (супинация) и ротация медиальная (пронация).

Несмотря на то, что многие крупные мышцы рассматриваются в анатомии как единое целое, различные части и отделы больших мышц могут осуществлять неодинаковые движения. В сгибании плеча, например, принимает участие Deltoid Anterior, в отведении плеча Middle Deltoid, а в разгибании Deltoid Posterior. Данные знания являются основой для составления индивидуальной программы тренировок, которую инструктор или тренер готовит для тренирующегося. Это позволяет грамотно осуществить подбор необходимых упражнений для воздействия на конкретную мышцу или мышечную группу.

В зависимости от того, какое исходное положение принимает тренирующийся, выполнение определенного упражнения может усложняться или облегчаться. Поэтому общая эффективность тренировки также зависит от исходного положения в выполнении упражнения. В фитнесе мы применяем следующие исходные положения: положение лежа — самое простое и легкое, положение сидя — менее легкое и положение стоя — с малой площадью опоры и поэтому достаточно сложное для удержания равновесия.

Для сглаживания разбалансировки в положениях тела с неустойчивым равновесием используются упоры. Очень распространенным является упор лежа. Это закрытая кинематическая цепь, поскольку все части тела замкнуты. Устойчивость и равновесие имеют достаточно высокую степень, центр тяжести расположен низко, площадь опоры большая.

Для примера верхней опоры могут послужить висы. Висы тоже считаются достаточно устойчивыми. Тело человека испытывает силу растяжения под тяжестью собственного веса. Руки прямые и соприкасаются с опорой в фиксировано положении. Вис является силовым упражнением уже сам по себе. Подтягивания на перекладине являются сложным силовым упражнением, которое может выполнить только подготовленный спортсмен с сильно развитыми мышцами верхнего пояса и верхних конечностей. В таком положении любая двигательная активность является сложно выполнимой, поэтому можно использовать опору для ног.

Ходьба — повседневная двигательная активность человека. Это попеременное движение ног. Одна нога служит опорой в тот момент, когда другая находится в воздухе и движется вперед. Ноги поочередно сменяют друг друга, меняя последовательно опорную фазу на двигательную.

Бег — быстрые циклические шаги, требующие от опорно-двигательного аппарата достаточно больших энергозатрат, напряжения центральной нервной системы, хорошей физической формы. Измеряется длиной шага, скоростью бега и длительностью временного промежутка.

Приседания — выполняются мышцами нижних конечностей. Площадь опоры достаточно мала, равновесие не обладает достаточной устойчивостью. При опоре руками выполнение приседаний значительно облегчается. Чем приседания глубже, тем они тяжелее. Усложнение упражнений осуществляется за счет темпа и числа приседаний, возможно дополнительное отягощение на плечи.

Прыжки — это поочередные отталкивания тела от площади опоры. Главную работу выполняют мышцы нижних конечностей, мышцы туловища и рук участвуют в движении, обеспечивая вспомогательную функцию.

(от Био. и Механика)

раздел биофизики (См. Биофизика), изучающий механические свойства живых тканей, органов и организма в целом, а также происходящие в них механические явления. Термином «Б.» ранее также называли отрасль эмбриологии — механику развития (См. Механика развития), чаще называемую экспериментальной эмбриологией (См. Экспериментальная эмбриология). Обычно термин «Б.» применяют к учению о движениях (См. Движение) человека и животных. Однако в середине 20 в. границы исследований по Б. расширились: Б. дыхательного аппарата (см. Дыхание) изучает его эластичное и неэластичное сопротивление, кинематику (т. е. геометрическую характеристику движения) и динамику дыхательных движений, а также другие стороны деятельности дыхательного аппарата в целом и его частей (лёгких, грудной клетки); Б. кровообращения изучает упругие свойства сосудов и сердца, гидравлическое сопротивление сосудов току крови, распространение упругих колебаний по сосудистой стенке, движение крови, работу сердца и др. (см. Гемодинамика); Б. движений, основываясь на данных анатомии и теоретической механики, исследует структуру органов движения, характер приложения мышечных сил, вызывающих движения в суставах, кинематику сочленений, распределение массы тела по его звеньям, закономерности движения этих звеньев и тела в целом, определяет характер, направление и значение действующих сил. Биомеханическая характеристика движения составляется на основе данных структурного, кинематического и динамического анализа. При структурном анализе определяют количество степеней свободы кинематических цепей тела, их характер (открытые, замкнутые); кинематический анализ даёт характеристику движения (траектории, скорости и ускорения); динамический — выявляет картину взаимодействия внутренних и внешних сил. Чаще всего задача биомеханического исследования сводится к определению картины действующих сил по кинематическим характеристикам движения. Это позволяет оценить экономичность движения, степень использования как внешних, так и мышечных сил и судить о механизмах координации и регуляции движений. В этой части Б. тесно соприкасается с физиологией движений. Другая задача биомеханического исследования — изучение отдельных положений тела (стояние, сидение и др.). При этом определяют значения статических моментов, положение общего центра тяжести тела по отношению к опоре, степень устойчивости тела в данном положении, т. е., по существу, устанавливают и характер взаимодействия внутренних и внешних сил. Решение таких задач также связано с физиологией, с учением о положении и равновесии тела в пространстве.

Читайте также:  Батончик из сухофруктов рецепт

В исследованиях по Б. используются разнообразные методы регистрации перемещений, скоростей, ускорений изучаемых движений. Наиболее употребительны оптические методы: ускоренная киносъёмка, Циклография, кимоциклография и др. С их помощью определяют пространственные перемещения тела, перемещения его звеньев друг относительно друга, рассчитывают линейные и угловые скорости и ускорения, действующие силы. Используются в Б. также методы электрической регистрации механических величин с помощью Механотронов, датчиков угловых перемещений, опорных динамографов.

История Б. Начало исследованиям по Б. было положено итальянским учёным Леонардо да Винчи, изучавшим движения человека с позиций анатомии и механики. Значительное влияние на развитие Б. оказал итальянский натуралист Дж. Борелли, который рассматривал организм как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики. В книге «О движении животных» (1680—81) он даёт механический анализ движений звеньев тела человека и животных при ходьбе, беге, плавании. Экспериментальное изучение ходьбы человека осуществили немецкие учёные Э. и В. Веберы (1836), В. Брауне и О. Фишер (1895), французский учёный Э. Марей (1894), американские — У. О. Фенн (1935), X. Элфтмен (1938). Изучению механики живых тканей посвящены работы американских учёных Ф. Г. Эванса (1957), Г. Фроста (1964); Б. дыхания исследовал американский учёный Дж. Л. Клеменс (1965), гемодинамику изучали его соотечественники Г. М. Тейлор (1953), Э. О. Эттингер (1964). Развитие Б. в России связано с работами по теоретической анатомии П. Ф. Лесгафта (1905) и книгой И. М. Сеченова «Очерк рабочих движений человека» (1901), содержащей сводку важнейших биомеханических характеристик движений человека. Исследования по Б. носили вначале прикладной характер и были направлены на рационализацию рабочего места, рабочей позы, формы инструмента, приёмов работы. Они базировались на методике циклографии и циклограмметрии. Детальные исследования локомоций (См. Локомоция) человека были осуществлены Н. А. Бернштейном и его сотрудниками. Проведён биодинамический анализ ходьбы здоровых людей, её эволюции у детей и стариков, а также бега, прыжков, марша.

Практическое значение. Исследования в области Б. представляют существенный интерес для разных областей знаний: физиологии труда и спорта, военной и клинической медицины, в том числе неврологии, ортопедии, травматологии, протезирования. Так, изучение Б. физических упражнений и спортивных движений способствует раскрытию основ мастерства и разработке научно обоснованной системы тренировки. Изучение рабочих движений человека даёт возможность оценить экономичность того или иного варианта движений и совершенствовать их структуру. Изучение прочности костей, суставов, связок, упруговязких свойств мышц и других тканей важно для травматологии и ортопедии, для понимания механизмов действия повреждающих факторов и предупреждения травм.

Значительный интерес представляет Б. для протезирования, являясь основой конструирования протезно-ортопедических изделий. Многие характеристики опорно-двигательного аппарата используются при проектировании других технических систем (см. Бионика).

Так, данные о структуре и механизмах управления «живыми кинематическими цепями» со многими степенями свободы (например, рука, начиная от ключично-лопаточного сочленения, имеет 33 степени свободы, что обеспечивает возможность чрезвычайно разнообразных движений и поворотов) применяются при создании автоматов-манипуляторов и роботов, используемых в различных областях техники.

Ряд биомеханических показателей состояния кровообращения (см. Баллистокардиография, Динамокардиография) и дыхания учитывают при диагностике и определении показаний к операциям на сердце и лёгких. Исследования Б. дыхания и кровообращения использованы при создании аппарата «сердце — лёгкие».

Лит.: Сеченов И. М., Очерк рабочих движений человека, М., 1901; Лесгафт П. Ф., Основы теоретической анатомии, 2 изд., ч. 1, СПБ. 1905; Бернштейн Н. А., Общая биомеханика, М., 1926 (имеется библ.); Исследования по биодинамике локомоций, под ред. Н. А. Бернштейна, М.— Л., 1935; Исследования по биодинамике ходьбы, бега, прыжка, под ред. Н. А. Бернштейна, М., 1940; Николаев Л. П., Руководство по биомеханике в применении к ортопедии, травматологии и протезированию, [ч. 1—2], К., 1947—50; Лёгкие. Клиническая физиология и функциональные пробы, пер. с англ., М., 1961; Weber W., Weber Ed., Mechanik der menschlichen Gehwerkzeuge, Gött., 1836; Pulsatile blood flow, ed. Е. O. Attinger, N. Y., 1964; Burton А. С., Physiology and biophysics of the circulation, Chi., 1965; Frost Н. М.. An introduction to biomechanics, Springfield (III.), 1967.

Читайте также:  Trx упражнения на плечи

Часто в описаниях тренажёров можно встретить, в качестве преимущества, указание на естественную биомеханику движений. Не реже попадается это мудрёное слово и в статьях о методиках тренировки, адресованных продвинутым спортсменам. Однако, многие любители фитнеса остаются в недоумении — о чём вообще идёт речь?

Именно в этом мы сегодня и будем разбираться. Что такое биомеханика? Что необходимо о ней знать? Почему это столь важно для эффективных и безопасных тренировок? Ниже — подробные ответы на эти, и другие вопросы.

Что такое биомеханика?

Если выражаться скучным языком науки, то биомеханика занимается изучением механических свойств человеческого организма, а также происходящих с ним процессов, используя методики и модели традиционной механики. А если проще?

Если проще, то задача биомеханики — выяснить, как наше тело совершает те или иные движения, почему оно совершает их именно таким образом, и как можно оптимизировать любое наше движение. Речь идёт, кстати, не только о работе суставов и мышц: биомеханика рассматривает, к примеру, и функционирование дыхательной системы.

В отличие от любого механизма, к организму человека природа, увы, не оставила никакой «инструкции по эксплуатации». Так что разобраться в поставленных вопросах — задача учёных.

Почему это важно в спорте и фитнессе?

Основных причин тому, что биомеханика так важна для спортсменов, две: это эффективность и безопасность. Рассмотрим их по отдельности.

Если движение, которое вы выполняете во время тренировки, является идеально правильным с точки зрения строения тела, то оно максимально эффективно. Эффективно сразу в двух смыслах. Во-первых, именно это — ключ к достижению максимального спортивного результата. Во-вторых, идеально правильное движение лучше всего развивает ваши мышцы, повышая коэффициент полезного действия тренировок.

А что насчёт безопасности?

Каким бы видом спорта вы ни занимались, организм находится под существенной нагрузкой — а, по мере роста вашего спортивного уровня, эта нагрузка растёт вплоть до экстремальной. Возникает и риск травм, и повышенный износ организма — мышц, суставов, связок, хрящей, костей.

Одинаково важно для любого тренинга

Следование оптимальной биомеханике в равной степени важно и для силового, и для кардиотренинга. С одной стороны, при силовом упражнении важно соблюдать правильную технику, потому что риск получения травмы весьма велик. С другой, кардиотренировка — это нагрузка на протяжении очень длительного времени, что также предъявляет высокие требования к правильности движений. К тому же, в этом случае выходит на важное место дыхательная система — это тоже часть биомеханики, как мы уже говорили выше.

Как добиться правильной биомеханики в тренировках?

Способа решения этой немаловажной задачи всего два, причём в большинстве случаев они не заменяют друг друга, а, скорее, дополняют.

Первый — это в совершенстве овладеть техникой того или иного упражнения. Здесь помогут опыт занятий спортом, руководство и советы грамотного тренера, а также постоянный самоконтроль. Именно поэтому в любом приличном спортивном зале обязательно установлены зеркала в количестве! Профессиональные спортсмены иногда даже используют замедленную съёмку своих тренировок, чтобы увидеть самые мелкие недочёты со стороны.

Второй путь к идеальной биомеханике каждого вашего движения в тренинге — разумеется, использование профессиональных тренажёров. Многие из них полностью контролируют траекторию движения, делая её идеально верной (это характерно для силовых тренажёров или, например, эллиптических и велоэргометров). Другие — минимизируют вред от возможных ошибок (например, беговые дорожки с продвинутой системой амортизации).

Как Life Fitness работает над соответствием тренажёров этим принципам?

Люди, которые разрабатывают тренажёры Life Fitness, применяют целый спектр оборудования и технологий, чтобы добиться идеальной, с точки зрения биомеханики, работы этих продуктов. В первую очередь, это кинематическая система захвата движения — схожая с той, которая давно используется при съёмках фильмов, и разработке видеоигр. Она позволяет отследить движения спортсмена, и оцифровать их для дальнейшего компьютерного анализа.

Применяется также система электромиографии, которая изучает работу мышц «изнутри». Как они сокращаются, под какой нагрузкой находятся, насколько включены в то или иное движение? Современные технологии позволяют определить это не «на глаз» или «по ощущениям», а абсолютно точно. И учесть полученные данные при разработке нового тренажёра.

На вооружении конструкторов Life Fitness есть и специальная система контроля дыхания, которая позволяет понять, сколько кислорода атлет потребляет при том или ином уровне и типе нагрузки. И это лишь часть возможностей компании!

Важно отметить, что биомеханические исследования используются не только во время конструирования новых тренажёров, но также и при разработке тренировочных программ, которые предустановлены в консолях Life Fitness.

В качестве заключения

Идеальное соответствие принципам биомеханики того, что вы делаете на тренировке — одна из важнейших целей, как вы могли убедиться из статьи. И добиться её можно, только сочетая собственные старания и внимание к деталям, с использованием настоящего профессионального оборудования.

Поэтому — не экономьте на тренажёрах! Выбирайте модели, создатели которых потратили время и силы на работу с человеческой биомеханикой. И, разумеется, чутко прислушивайтесь к советам профессиональных тренеров.

Ссылка на основную публикацию
Бжу картошки вареной
В этом разделе представлена калорийность вареной на воде картошки в различных вариантах приготовления, а также содержание белков, жиров и углеводов....
Белково углеводный гейнер
Какие компоненты входят в состав гейнера, как правильно его выбрать. Для чего его обычно принимают. Гейнер – качественное высокоуглеводное питание,...
Белковые гормоны это
Глава VI. БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА § 17. ГОРМОНЫ Общие представления о гормонах Слово гормон происходит от греч. гормао - возбуждать....
Бжу куриного бульона
Включая в свой рацион бульоны, важно учитывать КБЖУ. Хорошим помощником в этом вопросе станет таблица калорийности бульонов. Тут собрана не...
Adblock detector