Атф универсальный источник энергии

Атф универсальный источник энергии

Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь.

Метаболизм представляет собой высоко координированную и целенаправленную клеточную активность, обеспеченную участием многих взаимосвязанных ферментативных систем, и включает два неразрывных процесса анаболизм и катаболизм.

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из простых молекул. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.

Катаболизм – расщепление и окисление сложных органических молекул до простых конечных продуктов. Это сопровождается высвобождением энергии, заключенной в химических связях веществ. Большая часть энергии рассеивается в виде тепла, а часть используется для синтеза АТФ.

Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде макроэргических связей, при гидролизе каждой из которых выделяется 20 и более кдж/моль энергии. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ.

Молекулы АТФ в клетке непрерывно участвуют в реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Цикл АТФ-АДФ — основной механизм обмена энергии в биологических системах, а АТФ — универсальная «энергетическая валюта».

Каждая клетка обладает электрическим зарядом, который равен

Если заряд клетки равен 0,8-0,9, то в клетке весь адениловый фонд представлен в виде АТФ (клетка насыщена энергией и процесс синтеза АТФ не происходит).

По мере использования энергии, АТФ превращается в АДФ, заряд клетки становится равным 0, автоматически начинается синтез АТФ.

Способы синтеза АТФ

Основным способом получения АТФ в клетке является окислительное фосфорилирование, протекающее во внутренней мембране митохондрий ( дыхательной цепи).

Другой способ – субстратное фосфорилирование. Он связан с передачей макроэргического фосфата на АДФ.

Энергия АТФ используется для совершения различных видов работ в организме:

— механической (мышечное сокращение);

— электрической (проведение нервного импульса);

— химической (синтез веществ);

— осмотической (активный транспорт веществ через мембрану).

Этапы катаболизма. Биологическое окисление (тканевое дыхание). Особенности биологического окисления.

Обмен веществ состоит из 4 этапов.

Освобождается 1% энергии

этап – расщепление в желудочно-кишечном тракте белков, жиров и углеводов до мономеров (аминокислот, высших жирных кислот и глицерина, моносахаридов). В процессе пищеварения теряется видовая специфичность питательных веществ.

Освобождается 20-30% энергии

I этап – внутриклеточный катаболизм- глюкоза, высшие жирные кислоты, аминокислоты подвергаются специфическим превращениям до образования ацетил-КоА (гликолиз, β-окисление высших жирных кислот, трансаминирование аминокислот и др.)- процессы протекают в цитоплазме.

III этап – общий путь катаболизма – цикл трикарбоновых кислот (цикл Кребса);

ерминальная фаза окисления- тканевое дыхание, ЦПЭ- цепь переноса электронов (дыхательная цепь).

Окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды, называют тканевым дыханием, а цепь переноса электронов (ЦПЭ) – дыхательной цепью.

Особенности биологического окисления:

Протекает при температуре тела;

В присутствии Н2О;

Протекает постепенно через многочисленные стадии с участием ферментов-переносчиков, которые снижают энергию активации, происходит уменьшение свободной энергии, в результате чего энергия выделяется порциями. Поэтому окисление не сопровождается повышением температуры и не приводит к взрыву.

Электроны, поступающие в ЦПЭ, по мере их продвижения от одного переносчика к другому теряют свободную энергию. Значительная часть этой энергии запасается в АТФ, а часть рассеивается в виде тепла.

Перенос электронов от окисляемых субстратов к кислороду происходит в несколько этапов. В нем участвует большое количество промежуточных переносчиков, каждый из которых способен присоединять электроны от предыдущего переносчика и передавать следующему. Так возникает цепь окислительно-восстановительных реакций, в результате чего происходят восстановление О2 и синтез Н2О.

Первичные акцепторы протонов водорода и электронов.

Никотинзависимые дегидрогеназы, содержащие в качестве коферментов НАД + или НАДФ + . НАД + и НАДФ + — производные витамина РР. Субстраты, от которых происходит отщепление (дегидрирование) протонов Н + и ē на НАД- и НАДФ- зависимые дегидрогеназы находятся в цитоплазме и в матриксе митохондрий. Рабочей частью НАД и НАДФ служит никотинамид (вит. РР). В окисленной форме никотинамидные коферменты обозначают как НАД + или НАДФ + , так как они несут положительный заряд на атоме азоте пиридинового кольца. В реакциях дегидрирования из двух атомов водорода, отщепляемых от окисляемого субстрата, никотинамидное кольцо присоединяет ион водорода и два электрона, второй ион водорода переходит в среду.

Почти все физиологические процессы в организме требуют энергии для их реализации. Питательные вещества являются составляющими энергии и периодически требуются организму. По причинам их дефицита организм эволюционно научился их удерживать и сохранять на какое-то время.

Энергия человека

Многие вещества, всасываемые в пищеварительной системе, не подвергаются окислению, а накапливаются путем повторного синтеза высокомолекулярных соединений — гликогена и триацилглицеринов, которые служат резервом энергии организма. Хранение энергии в форме макромолекулярных соединений является огромным преимуществом, поскольку они не участвуют в клеточном метаболизме и мало влияют на осмолярность клеток, то есть являются энергетическим резервом.

Читайте также:  Reebok для бега зимой

Энергетические запасы организма

Углеводы хранятся в форме гликогена. Гликоген в организме составляет менее 1% от общего запаса энергии. Гликогенные отложения находятся в печени и мышцах. Гликоген в печени может поступать в другие ткани (нервы, мышцы, эритроциты) путем гликогенолиза и выделения образующейся глюкозы в кровь. Гликоген, имеющийся в мышцах, может использоваться только ими, потому что, в отличие от печени, фермент глюкозо-6-фосфатазы, который дефосфорилирует глюкозу, не присутствует в мышцах. Только дефосфорилированная глюкоза может проникать через клеточную мембрану и попадать в кровоток. Запасы углеводов могут обеспечить метаболические потребности организма менее чем на два дня, а глюкоза во внеклеточной жидкости — всего на один час.

Жир хранится в форме триацилглицеролов. Они представляют 75% энергетического резерва организма. Триацилглицеролы имеют высокую теплообразующую способность (39 кДж / г) и требуют очень небольшого количества дополнительной воды для хранения. По этой причине они являются очень эффективным хранилищем энергии. Триацилглицеролы хранятся в основном в подкожной жировой ткани, в небольших количествах в мышцах и во внутренних органах. Сохраненные триацилглицеролы в жировой ткани у людей с нормальной массой тела могут удовлетворить потребности в энергии в течение 2 месяцев при полном голодании.

В организме человека большое количество белка. Тем не менее, только половина из него может быть мобилизована в качестве источника энергии, что составляет 25% от общего объема хранения энергии. Использование белков в качестве основного источника энергии в течение длительного периода времени невозможно, поскольку они играют жизненно важную структурную и функциональную роль. Это последние запасы, которые будут использованы только в крайнем случае при длительном голодании.

Энергия требуется для синтеза высокомолекулярных соединений для энергетических депо. В живых организмах постоянно происходят химические процессы, что приводит к уменьшению свободной энергии. По этой причине они не могут существовать, если они не снабжены энергией из внешней среды. Животные организмы получают эту энергию, как было отмечено выше, потребляя питательные вещества — углеводы, жиры и белки. В рациональной диете 55-60% энергии обеспечивается углеводами, 25-30% жирами и 10-15% белками. При переваривании разных питательных веществ выделяется разное количество энергии:

  • 39 кДж 1 г жира;
  • 17,2 кДж 1 г углеводов;
  • 17,2 кДж 1 г белка.

Часть энергии, синтезируемой при расщеплении питательных веществ, выделяется в виде тепла, что важно для поддержания температуры тела. Другая часть используется для синтеза макроэнергетических соединений, из которых энергия выделяется контролируемым образом. Основным макроэргическим соединением, используемым в организме, является аденозинтрифосфат (АТФ).

Что такое АТФ

АТФ является источником энергии для реализации биологических процессов во время сокращения мышц, что позволяет осуществить активный транспорт элементов через клеточные мембраны и синтез питательных веществ. Часто применяется в качестве пищевой добавки для увеличения мышечной энергии. При необходимости он разрушает свою молекулу и использует энергию, содержащуюся в ее связях. АТФ также оказывает значительный положительный эффект вне самой клетки, улучшая кровоток, расширяя кровеносные сосуды и подавляя боль.

Формирование АТФ

В цитоплазме клеток есть небольшой запас АТФ, который может удовлетворить энергию и потребности всего на 1 минуту. Следовательно, АТФ непрерывно повторно синтезируется. За день генерируется и потребляется около 63 килограммов АТФ. Это макроэргическое соединение может быть синтезировано двумя способами — анаэробным в цитоплазме и аэробным в митохондриях.

Углеводы являются единственными питательными веществами, которые могут поставлять энергию через анаэробные пути. Процесс анаэробного переваривания глюкозы называется гликолизом. Он происходит быстро, но связан с синтезом небольшого количества молекул АТФ — 2 АТФ на молекулу глюкозы. Следовательно, анаэробный синтез АТФ не может быть основным способом удовлетворения энергетических потребностей клеток.

Исключением являются эритроциты, быстро сокращающиеся мышечные волокна и клетки почечного мозгового вещества. Все остальные клетки поставляют энергию путем окисления питательных веществ в митохондриях.

Таким образом, большая часть высвобождаемой энергии используется для синтеза АТФ через процессы окислительного фосфорилирования. Аэробный метаболизм гораздо более эффективен, чем анаэробный, поскольку большая часть химической энергии хранится в форме макроэнергетических соединений. Окисление одной молекулы глюкозы аэробным путем до CO 2 и H 2 O приводит к высвобождению 36 или 38 молекул АТФ, а окисление одной молекулы пальмитиновой кислоты высвобождает 129 молекул АТФ. Скорость, с которой АТФ образуется в результате окислительного фосфорилирования, зависит от нескольких факторов:

  • скорость истощения АТФ — когда скорость истощения АТФ клетки высока, ее образование также осуществляется с высокой скоростью из-за увеличения количества АТФ;
  • снабжение клеток кислородом и окислительными субстратами (глюкоза, жирные кислоты, лактат, аминокислоты) — это зависит от активности дыхательной, сердечно-сосудистой, пищеварительной и эндокринной систем.
Читайте также:  Аршавин википедия футболист сейчас

Коэффициент дыхания

При окислении питательных веществ кислород расходуется и образуется углекислый газ. Коэффициент дыхания определяется соотношением между образовавшейся двуокисью углерода и используемым кислородом. Коэффициент дыхания для углеводов равен 1, для жиров 0,7 и для белков 0,8-0,85. Низкое значение коэффициента дыхания для жиров позволяет использовать их для питания пациентов с нарушенной дыхательной функцией. Увеличение количества жира приведет к снижению производства углекислого газа при том же объеме используемого кислорода. Это снизит требования к вентиляции легких. Частота дыхания не идентична отношению объема дыхания.

Коэффициент дыхательного объема (КДО) — это отношение объема выдыхаемого углекислого газа к объему кислорода, потребляемого в течение определенного периода времени. КДО зависит от типа окисленных питательных веществ и процессов, в которых образуется углекислый газ и расходуется кислород. По этим причинам при тяжелой физической работе и в течение периода восстановления после этого КДО имеет значения, отличные от коэффициента дыхания.

Энергетический эквивалент кислорода (ЭЭК) характеризуется количеством энергии, выделяемой при потреблении 1 литра кислорода. Для трех типов питательных веществ ЭЭК имеет следующие значения:

  • углеводы — 21,1 кДж / л;
  • белки — 20 кДж / л;
  • жир — 19,6 кДж / л;

Различное значение ЭЭK каждого из трех типов питательных веществ реализуется только в определенных обстоятельствах. Углеводы являются основным источником энергии при максимальной энергозатратности, потому что они анаэробно перевариваются, быстро доставляют энергию и имеют самое высокое значение ЭЭК. Жиры являются подходящим источником энергии для длительных нагрузок без ограничения подачи кислорода для их окисления, потому что они выделяют наибольшее количество энергии во время окисления и имеют самый низкий ЭЭК.

Хранение энергии в форме макромолекулярных соединений является огромным преимуществом, поскольку они не участвуют в клеточном метаболизме и мало влияют на осмолярность клеток, то есть являются энергетическим резервом

Всем привет! Эту статью я хотел посвятить клеточному ядру и ДНК. Но перед этим нужно затронуть то, как клетка хранит и использует энергию (спасибо spidgorny). Мы будем касаться вопросов связанных с энергией почти везде. Давайте заранее в них разберемся.

Из чего можно получать энергию? Да из всего! Растения используют световую энергию. Некоторые бактерии тоже. То есть органические вещества синтезируются из неорганических за счет световой энергии. + Есть хемотрофы. Они синтезируют органические вещества из неорганических за счет энергии окисления аммиака, сероводорода и др. веществ. А есть мы с вами. Мы — гетеротрофы. Кто это такие? Это те, кто не умеет синтезировать органические вещества из неорганических. То есть хемосинтез и фотосинтез, это не для нас. Мы берем готовую органику (съедаем). Разбираем ее на кусочки и либо используем, как строительный материал, либо разрушаем для получения энергии.
Что конкретно мы можем разбирать на энергию? Белки (сначала разбирая их на аминокислоты), жиры, углеводы и этиловый спирт (но это по желанию). То есть все эти вещества могут быть использованы, как источники энергии. Но для ее хранения мы используем жиры и углеводы. Обожаю углеводы! В нашем теле основным запасающим углеводом является гликоген.

Он состоит из остатков глюкозы. То есть это длинная, разветвленная цепочка, состоящая из одинаковых звеньев (глюкозы). При необходимости в энергии мы отщепляем по одному кусочку с конца цепи и окисляя его получаем энергию. Такой способ получения энергии характерен для всех клеток тела, но особенно много гликогена в клетках печени и мышечной ткани.

Теперь поговорим о жире. Он хранится в специальных клетках соединительной ткани. Имя им — адипоциты. По сути это клетки с огромной жировой каплей внутри.

При необходимости, организм достает жир из этих клеток, частично расщепляет и транспортирует. По месту доставки происходит окончательное расщепление с выделением и преобразованием энергии.

Довольно популярный вопрос: «Почему нельзя хранить всю энергию в виде жира, или гликогена?»
У этих источников энергии разное назначение. Из гликогена энергию можно получить довольно быстро. Его расщепление начинается почти сразу после начала мышечной работы, достигая пика к 1-2 минуте. Расщепление жиров протекает на несколько порядков медленней. То есть если вы спите, или медленно куда-то идете — у вас постоянный расход энергии, и его можно обеспечить расщепляя жиры. Но как только вы решите ускориться (упали сервера, побежали поднимать), резко потребуются много энергии и быстро ее получить расщепляя жиры не получится. Тут нам и нужен гликоген.

Есть еще одно важное различие. Гликоген связывает много воды. Примерно 3 г воды на 1 г гликогена. То есть, для 1 кг гликогена это уже 3 кг воды. Не оптимально… С жиром проще. Молекулы липидов (жиры=липиды), в которых запасается энергия не заряжены, в отличие от молекул воды и гликогена. Такие молекулы называется гидрофобными (дословно, боящимися воды). Молекулы воды же поляризованы. Примерно так это выглядит.

Читайте также:  Болит шея у ребенка после сна

По сути, положительно заряженные атомы водорода взаимодействуют с отрицательно заряженными атомами кислорода. Получается стабильное и энергетически выгодное состояние.
Теперь представим молекулы липидов. Они не заряжены и не могут нормально взаимодействовать с поляризованными молекулами воды. Поэтому смесь липидов с водой энергетически невыгодна. Молекулы липидов не способны адсорбировать воду, как это делает гликоген. Они «кучкуются» в так называемые липидные капли, окружаются мембраной из фосфолипидов (одна их сторона заряжена и обращена к воде снаружи, вторая — не заряжена и смотрит на липиды капли). В итоге, у нас есть стабильная система, эффективно хранящая липиды и ничего лишнего.

Окей, мы разобрались с тем, в каких формах хранится энергия. А что с ней происходит дальше? Вот отщепили мы молекулу глюкозы от гликогена. Превратили ее в энергию. Что это значит?
Сделаем небольшое отступление.

В клетке происходит порядка 1.000.000.000 реакций каждую секунду. При протекании реакции одно вещество трансформируется в другое. Что при этом происходит с его внутренней энергией? Она может уменьшаться, увеличиваться или не меняться. Если она уменьшается -> происходит выделение энергии. Если увеличивается -> нужно взять энергию из вне. Организм обычно совмещает такие реакции. То есть энергия, выделившаяся при протекании одной реакции идет на проведение второй.

Так вот в организме есть специальные соединения, макроэрги, которые способны накапливать и передавать энергию в ходе реакции. В их составе есть одна, или несколько химических связей, в которых и накапливается эта энергия. Теперь можно вернуться к глюкозе. Энергия выделившаяся при ее распаде запасется в связях этих макроэргов.

Разберем на примере.

Самым распространенным макроэргом (энергетической валютой) клетки является АТФ (Аденозинтрифосфат).

Выглядит примерно так.

В его состав входит азотистое основание аденин (одно из 4, используемых для кодирования информации в ДНК), сахар рибоза и три остатка фосфорной кислоты (поэтому и АденозинТРИфосфат). Именно в связях между остатками фосфорной кислоты накапливается энергия. При отщеплении одного остатка фосфорной кислоты образуется АДФ (АденозинДИфосфат). АДФ может выделять энергию, отрывая еще один остаток и превращаясь в АМФ (АденозинМОНОфосфат). Но эффективность отщепленная второго остатка намного ниже. Поэтому, обычно, организм стремится из АДФ снова получить АТФ. Происходит это примерно так. При распаде глюкозы, выделяющаяся энергия тратится на образование связи между двумя остатками фосфорной кислоты и образование ATP. Процесс многостадийный и пока мы его опустим.

Получившийся АТФ является универсальным источником энергии. Он используется везде, начиная от синтеза белка (для соединения аминокислот нужна энергия), заканчивая мышечной работой. Моторные белки, осуществляющие мышечное сокращение используют энергию, запасенную в АТФ, для изменения своей конформации. Изменение конформации это переориентация одной части большой молекулы относительно другой. Выглядит примерно так.

То есть химическая энергия связи переходит в механическую энергию. Вот реальные примеры белков, использующих АТФ для осуществления работы.

Знакомьтесь, это миозин. Моторный белок. Он осуществляет перемещение крупных внутриклеточных образований и участвует в сокращении мышц. Обратите внимание, у него имеется две «ножки». Используя энергию запасенную в 1 молекуле АТФ он осуществляет одно конформационное изменение, по сути один шаг. Самый наглядный пример перехода химической энергии АТФ в механическую.

Второй пример — Na/K насос. На первом этапе он связывает три молекулы Na и одну АТФ. Используя энергию АТФ, он меняет конформацию, выбрасывая Na из клетки. Затем он связывает две молекулы калия и, возвращаясь к исходной конформации, переносит калий в клетку. Штука крайне важная, позволяет поддерживать уровень внутриклеточного Na в норме.

А если серьезно, то:

Пауза. Зачем нам АТФ? Почему мы не можем использовать запасенную в глюкозе энергию напрямую? Банально, если окислить глюкозу до CO2 за один раз, мгновенно выделится экстремально много энергии. И большая ее часть рассеется в виде тепла. Поэтому реакция разбивается на стадии. На каждой выделяется немного энергии, она запасается, и реакция продолжается пока вещество полностью не окислиться.

Подитожу. Запасается энергия в жирах и углеводах. Из углеводов ее можно извлечь быстрее, но в жирах можно запасти больше. Для проведения реакций клетка использует высокоэнергетические соединения, в которых запасается энергия распада жиров, углеводов и тд… АТФ — основное такое соединение в клетке. По сути, бери и используй. Однако не единственное. Но об этом позже.

Ссылка на основную публикацию
Арахис ккал на 100 грамм
Диетические свойства: Какую имеет арахис калорийность, какие есть у него диетические свойства, все это очень интересует тех, кто ведет здоровый...
Анна кокуркина холка
Биография Анна Куркурина — спортсменка, которую часто называют самой сильной женщиной планеты. Мускулы и спортивные рекорды Анны действительно впечатляют. Однако...
Анна куркина личная жизнь
Биография Анна Куркурина — спортсменка, которую часто называют самой сильной женщиной планеты. Мускулы и спортивные рекорды Анны действительно впечатляют. Однако...
Арахис с медом польза для мужчин
Ослабление потенции – распространенная проблема для мужчин. При отсутствии серьезных нарушений в половой системе не рекомендуется принимать медикаментозные препараты. Предпочтение...
Adblock detector