1 Моль атф

1 Моль атф

Дано определение АТФ, описана история открытия АТФ, содержание АТФ в мышечных волокнах, приведена структура АТФ, описаны реакции гидролиза и ресинтеза АТФ в мышечных волокнах

АТФ мышц

Что такое АТФ?

АТФ (аденозинтрифосфат, аденозинтрифосфорная кислота) – основное макроэргическое соединение организма[1]. Состоит из аденина (азотистого основания), рибозы (углевод) и трех последовательно расположенных фосфатных остатков, причем второй и третий фосфатные остатки присоединяются макроэргической связью. Структура АТФ выглядит следующим образом (рис.1).

Рис. 1. Структура АТФ

История открытия АТФ

АТФ был открыт(а) в 1929 году немецким биохимиком Карлом Ломаном (Karl Lohmann) и, независимо Сайрусом Фиске (Cyrus Fiske) и Йеллапрагада Субба Рао (Yellapragada Subba Rao) из Гарвардской медицинской школы. Однако структура АТФ была установлена только спустя несколько лет. Владимир Александрович Энгельгардт в 1935 году показал, что для сокращения мышц необходимо присутствие АТФ. В 1939 году В. А. Энгельгардт совместно со своей женой М. Н. Любимовой предъявили доказательства, что миозин проявляет ферментную активность при этом расщепляется АТФ и высвобождается энергия. Фриц Альберт Липманн (Fritz Albert Lipmann) в 1941 году показал, что АТФ является основным переносчиком энергии в клетке. Ему принадлежит фраза «богатые энергией фосфатные связи». В 1948 году Александр Тодд (Alexander Todd) (Великобритания) синтезировал АТФ. В 1997 году Пол Д. Бойер (Paul D. Boyer) и Джон Э. Уокер (John E. Walker) получили Нобелевскую премию по химии за разъяснение ферментативного механизма, лежащего в основе синтеза АТФ.

Содержание АТФ в мышечных волокнах

Количество АТФ в тканях организма человека относительно невелико, поскольку он (она) в тканях не запасается. В мышечных волокнах содержится 5 ммоль на кг сырой ткани или 25 ммоль на кг сухой мышечной ткани.

Реакция гидролиза

Непосредственным источником энергии при мышечной деятельности является АТФ, который (ая) находится в саркоплазме мышечных волокон. Освобождение энергии происходит в результате реакции гидролиза АТФ.

Гидролиз АТФ – реакция, протекающая в мышечных волокнах, при которой АТФ, взаимодействуя с водой распадается на АДФ и фосфорную кислоту. При этом выделяется энергия. Гидролиз АТФ ускоряется ферментом АТФ-азой. Этот фермент находится на каждой миозиновой головке толстого фитламента.

Реакция гидролиза АТФ имеет следующий вид:

В результате гидролиза 1 моль АТФ выделяется энергия, равная 42-50 кДж (10-12 ккал). Скорость протекания реакции гидролиза повышают ионы кальция. Следует отметить, что АДФ (аденозиндифосфат) в мышечных волокнах выполняет роль универсального акцептора (приёмника) высокоэнергетического фосфата и используется для образования АТФ.

Фермент АТФ-аза

Фермент АТФ-аза расположен на миозиновых головках, что играет существенную роль в сокращении мышечных волокон. Активность фермента АТФ-азы лежит в основе классификации мышечных волокон на медленные (I тип), промежуточные (IIA тип) и быстрые (IIB тип).

Читайте также:  Алексей шредер биография

Химическая энергия, выделяемая в результате гидролиза в мышечных волокнах, расходуется на: сокращение мышечных волокон (взаимодействие белков актина и миозина) и на их расслабление (работу кальциевого и натрий-калиевого насосов). При взаимодействии с актином одна молекула миозина за одну секунду гидролизует 10 молекул АТФ.

Запасы АТФ в мышечных волокнах невелики и могут обеспечить выполнение интенсивной работы в течение 1-2 с. Дальнейшая мышечная деятельность осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ, поэтому при сокращении мышечных волокон в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию и ресинтез АТФ, восполняющий запасы АТФ в мышечных волокнах.

Ресинтез АТФ

Ресинтез АТФ – синтез АТФ в мышечных волокнах из различных энергетических субстратов во время физической работы. Его формула выглядит следующим образом:

Ресинтез АТФ может осуществляться двумя путями:

  • без участия кислорода (анаэробный путь);
  • с участием кислорода (аэробный путь).

Если в саркоплазме мышечных волокон недостаточно АТФ, то затрудняется процесс их расслабления. Возникают судороги.

Более подробно строение и функции мышц описаны в моих книгах "Гипертрофия скелетных мышц человека" и "Биомеханика мышц"

Литература

  1. Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
  2. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.

[1] Макроэргические соединения – химические соединения, содержащие связи, при гидролизе которых происходит освобождение значительного количества энергии.

Качественная подготовка к централизованному тестированию, к поступлению в лицей

Поделиться с друзьями

Главное меню

Для учащихся и учителей

Консультация репетитора

Авторизация

Поиск по сайту

1. Какие слова пропущены в предложении и заменены буквами (а—г)?

"В состав молекулы АТФ входит азотистое основание (а), пятиуглеродный моносахарид (б) и (в) остатка (г) кислоты."

Буквами заменены следующие слова: а – аденин, б – рибоза, в – три, г – фосфорной.

2. Сравните строение АТФ и строение нуклеотида. Выявите сходство и различия.

Фактически АТФ представляет собой производное аденилового нуклеотида РНК (аденозинмонофосфата, или АМФ). В состав молекул обоих веществ входит азотистое основание аденин и пятиуглеродный сахар рибоза. Различия связаны с тем, что в составе аденилового нуклеотида РНК (как и в составе любого другого нуклеотида) есть лишь один остаток фосфорной кислоты, и отсутствуют макроэргические (высокоэнергетические) связи. Молекула АТФ содержит три остатка фосфорной кислоты, между которыми имеются две макроэргические связи, поэтому АТФ может выполнять функцию аккумулятора и переносчика энергии.

3. Что представляет собой процесс гидролиза АТФ? Синтеза АТФ? В чём заключается биологическая роль АТФ?

Читайте также:  50Мл это сколько в граммах

В процессе гидролиза происходит отщепление от молекулы АТФ одного остатка фосфорной кислоты (дефосфорилирование). При этом разрывается макроэргическая связь, высвобождается 40 кДж/моль энергии и АТФ превращается в АДФ (аденозиндифосфорную кислоту):

АДФ может подвергаться дальнейшему гидролизу (что происходит редко) с отщеплением ещё одной фосфатной группы и выделением второй «порции» энергии. При этом АДФ преобразуется в АМФ (аденозинмонофосфорную кислоту):

Синтез АТФ происходит в результате присоединения к молекуле АДФ остатка фосфорной кислоты (фосфорилирование). Этот процесс осуществляется главным образом в митохондриях и хлоропластах, частично в гиалоплазме клеток. Для образования 1 моль АТФ из АДФ должно быть затрачено не менее 40 кДж энергии:

АТФ является универсальным хранителем (аккумулятором) и переносчиком энергии в клетках живых организмов. Практически во всех биохимических процессах, идущих в клетках с затратами энергии, в качестве поставщика энергии используется АТФ. Благодаря энергии АТФ синтезируются новые молекулы белков, углеводов, липидов, осуществляется активный транспорт веществ, движение жгутиков и ресничек, происходит деление клеток, осуществляется работа мышц, поддерживается постоянная температура тела теплокровных животных и т. д.

4. Какие связи называются макроэргическими? Какие функции могут выполнять вещества, содержащие макроэргические связи?

Макроэргическими называют связи, при разрыве которых выделяется большое количество энергии (например, разрыв каждой макроэргической связи АТФ сопровождается высвобождением 40 кДж/моль энергии). Вещества, содержащие макроэргические связи, могут служить аккумуляторами, переносчиками и поставщиками энергии для осуществления различных процессов жизнедеятельности.

5. Общая формула АТФ — С10H16N5O13P3. При гидролизе 1 моль АТФ до АДФ выделяется 40 кДж энергии. Сколько энергии выделится при гидролизе 1 кг АТФ?

● Рассчитаем молярную массу АТФ:

М (С10H16N5O13P3) = 12 × 10 + 1 × 16 + 14 × 5 + 16 × 13 + 31 × 3 = 507 г/моль.

● При гидролизе 507 г АТФ (1 моль) выделяется 40 кДж энергии.

Значит, при гидролизе 1000 г АТФ выделится: 1000 г × 40 кДж : 507 г ≈ 78,9 кДж.

Ответ: при гидролизе 1 кг АТФ до АДФ выделится около 78,9 кДж энергии.

6. В одну клетку ввели молекулы АТФ, меченные радиоактивным фосфором 32 Р по последнему (третьему) остатку фосфорной кислоты, а в другую — молекулы АТФ, меченные 32 Р по первому (ближайшему к рибозе) остатку. Через 5 мин в обеих клетках измерили содержание неорганического фосфат-иона, меченного 32 Р. Где оно оказалось выше и почему?

Последний (третий) остаток фосфорной кислоты легко отщепляется в процессе гидролиза АТФ, а первый (ближайший к рибозе) – не отщепляется даже при двухступенчатом гидролизе АТФ до АМФ. Поэтому содержание радиоактивного неорганического фосфата будет выше в той клетке, в которую ввели АТФ, меченную по последнему (третьему) остатку фосфорной кислоты.

Читайте также:  90 60 120 Женщины фото

Систематическое наименование АТФ:

9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат.

Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.

Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1′-углеродом рибозы. К 5′-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.

АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.

Высвобожденная энергия используется в разнообразных процессах, протекающих с затратой энергии.

Роль в организме

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Все это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

  • Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
  • Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
  • АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
  • Также известна роль АТФ в качестве медиатора в синапсах

Пути синтеза

В организме АТФ синтезируется из АДФ, используя энергию окисляющихся веществ:

Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.

Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.

В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Ссылка на основную публикацию
Adblock detector